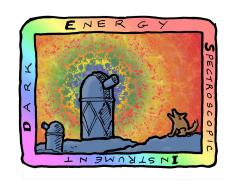
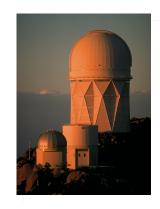


Testing modified gravity with galaxy surveys





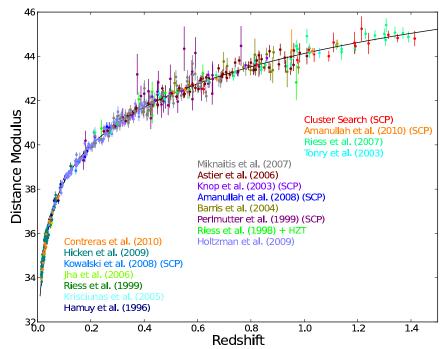
Jorge Cervantes, ININ

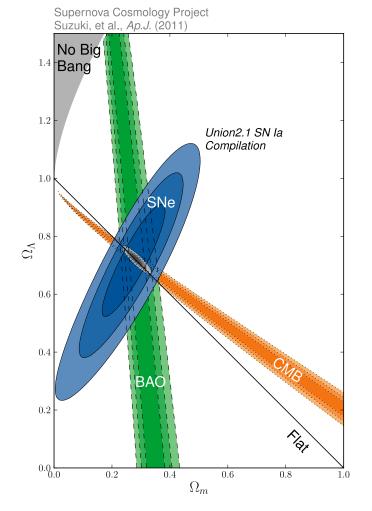
Dark Energy (DE)/Modified Gravity (MG)

DE is an entity, geometric or susbtancial that is in the entire Universe and provokes an accelerating expansion since at least z = 0.5.

$$m-M=5\log_{10}\left(rac{d_L}{ ext{Mpc}}
ight)+25.$$

$$d_L = rac{(1+z)}{H_0} \int_0^z rac{dz'}{\sqrt{\sum_i \Omega_i^0 (1+z')^{3(1+w)}}} \cdot \quad
ho_i /
ho_i = w_i$$





Models of Dark Energy or Modified Gravity?

Dark fluids or dark geometry?

Dark Fluid Components

$$rac{1}{8\pi G}G_{\mu
u}=T_{\mu
u}^{
m obs}+T_{\mu
u}^{
m dark}$$

Any selection of the dark energy-momentum tensor is arbitrary.

Dark Geometry

$$rac{1}{8\pi G}(G_{\mu
u}+G_{\mu
u}^{
m dark})=T_{\mu
u}^{
m obs}$$

Any selection of the dark Einstein tensor is arbitrary.

. . .

A popular choice (historical reasons!):

$$T_{\mu\nu}^{\,\mathrm{dark}} = T_{\mu\nu}^{\,\mathrm{dm}} + T_{\mu\nu}^{\,\mathrm{de}}$$

with:

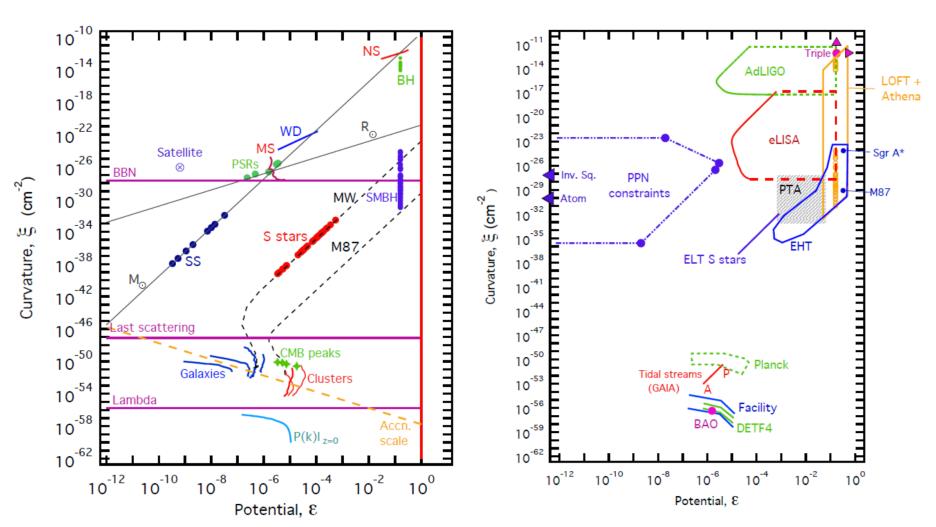
$$T_{\mu\nu}^{\,\mathrm{dm}} = \rho u_{\mu} u_{\nu}$$
 a perfect fluid of CDM,

$$T_{\mu\nu}^{\,\mathrm{de}} = \Lambda \, g_{\mu\nu}$$
 the cosmological constant,

ACDM is a very successful model, but there are many more possibilities (*dark degeneracy*).

Why modifying gravity?

...because we haven't test it enough at large scales?



Models of Dark Energy or Modified Gravity?

There are **a plenty of models** that introduce new degrees of freedom in the dynamics and kinematics: f(R), Extended Quintessence, DGP, Galileon, Symmetron, Dilaton. Related to these there are models of DE/MG with non-trivial kinematics and interaction with DM.

Most models assume the existence of a **new scalar field** degree of freedom that implies the action of a **new, fifth, gravitational force**.

Theoretical Models

The Lagrangian of the standard model of cosmology is:

$$\mathcal{L}_{GR} = \frac{1}{16\pi G} \sqrt{-g} (R + \Lambda) + \mathcal{L}_m(g_{\mu\nu})$$

Theoretical Models

Scalar Tensor gravity

In general, the scalar tensor theory is described by the following action

$$S = \int d^4x \sqrt{-g} \left(\psi R - \frac{\omega_{BD}(\psi)}{\psi} (\partial \psi)^2 - V(\psi) \right) + \int d^4x \sqrt{-g} \mathcal{L}_m(g_{\mu\nu})$$

By a conformal transformation $g_{\mu\nu} = A(\phi)^2 \bar{g}_{\mu\nu}$ and a redefinition of the scalar field can transform the action to the Einstein frame

$$S = \int d^4x \sqrt{-\bar{g}} \left(R - \frac{1}{2} (\partial \phi)^2 - \bar{V}(\phi) \right) + \int d^4x \sqrt{-g} \mathcal{L}_m \left(A(\phi)^2 \bar{g}_{\mu\nu} \right).$$

In this frame, the scalar field is directly coupled to matter.

Screening mechanisms: **Weak Coupling** (e.g. symmetron, dilaton), **Large mass** (e.g. chameleons), **Large Inertia** (e.g. 1st derivatives K-mouflage, 2nd derivatives Vainshtein)

$$S = \int d^4x \sqrt{-g} f(R) + \int d^4x \sqrt{-g} \mathcal{L}_m$$

Hu & Sawicki (2007)
$$f(R) = -m^2 \frac{c_1 (R/m^2)^n}{c_2 (R/m^2)^n + 1}$$

We will consider n=1, with $f_R(t0) = FN = -10^{-N}$ The scalar degree of freedom today

Braneworld Gravity (DGP)

$$S = \frac{1}{2M_5^3} \int d^5x \sqrt{-(5)}g^{(5)}R + \frac{1}{2M_4^2} \int d^4x \sqrt{-g} \Big((4)R + \mathcal{L}_m \Big)$$

An example of Vainhstein Mechanism

Galileons & Horndenski

$$\partial_{\mu}\phi \rightarrow \partial_{\mu}\phi + c_{\mu}$$

$$\mathcal{L}_3^{\text{gal}} = -\frac{1}{2} (\partial \phi)^2 \Box \phi,$$

$$\mathcal{L}_4^{\rm gal} = -\frac{1}{2} (\partial \phi)^2 \left[(\Box \phi)^2 - (\partial_\mu \partial_\nu \phi)^2 \right],$$

$$\mathcal{L}_{5}^{gal} = -\frac{1}{4} (\partial \phi)^{2} [(\Box \phi)^{3} - 3\Box \phi (\partial_{\mu} \partial_{\nu} \phi)^{2} + 2(\partial_{\mu} \partial_{\nu} \phi)^{3}].$$

Kinetic braiding

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} R + K(\phi, X) - G_3(\phi, X) \Box \phi \right] + S_m(g_{\mu\nu})$$

$$K(\phi, X) = X + \frac{\alpha}{4\Lambda^4} X^2$$
, k-mouflage,

$$K(\phi, X) = X$$
, $G_3(\phi, X) = \frac{1}{\Lambda^3}X$ Vainshtein.

Generic Eqs

$$\dot{\vec{v}}_i = -\vec{\nabla}\Phi - \beta_i(\phi)\vec{\nabla}\delta\phi$$

i denotes different cosmic components (i.e. baryons, dark matter)

 $eta_i(\phi)$ is the strength of the fifth force associated to the new scalar degree of freedom $\,\delta\phi$

The standard Newtonian potential is given by

$$\nabla^2 \Phi = 4\pi G \sum_j \rho_j \delta_j$$

j labels all clustering components (i.e. baryons, DM, DE)

The equation of motion of the scalar field perturbation is

$$\nabla^2 \delta \phi = F(\delta \phi) + \sum_j 8\pi G \beta_j(\phi) \delta_j ,$$

 $F(\delta\phi)$ is a generic function of the scalar field perturbation. It encodes an effective mass of the scalar field.

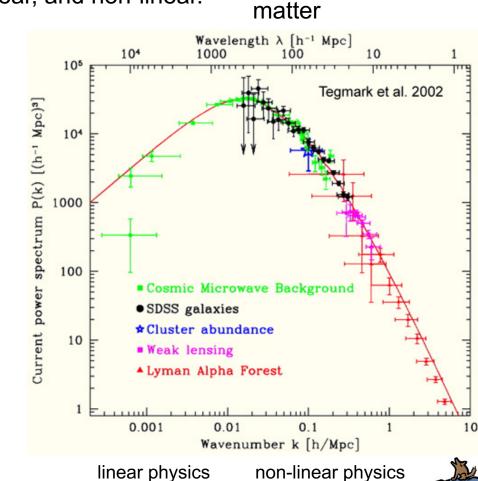
What are the observables?

CMB and Matter Power Spectrum

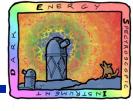
Its construction depend upon the approximation approach: Linear perturbation theory, quasi-linear, and non-linear.

light Multipole moment, ℓ 10 50 500 1000 1500 2000 2500 Temperature fluctuations [$\mu \, {
m K}^2$] 6000 5000 4000 3000 2000 1000 0.2° 0.1° 18° 1° 0.07° Angular scale

linear physics



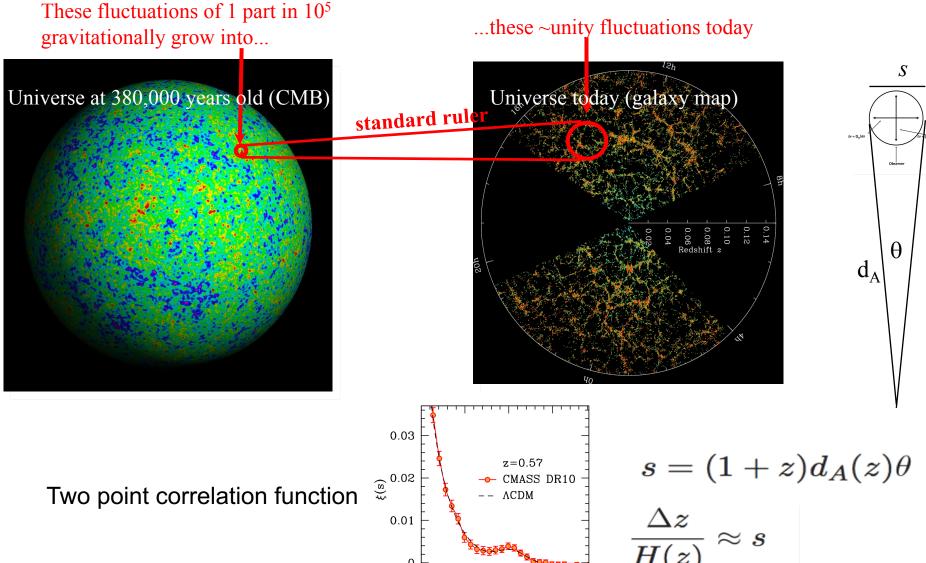
BAO and RSD



Two important features of the matter power spectrum:

- BAO Baryon Acoustic Oscillations
- RSD Redshift Space Distortions

Baryon Acoustic Oscillation (BAO)

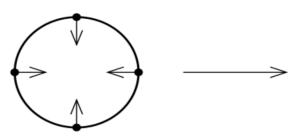


s/(Mpc)

Redshift Space Distortion (RSD)

Real space:

Linear regime



Redshift space:

Squashing effect

Matter Power spectrum:

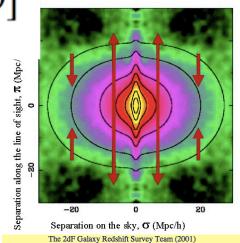
$$P(k, \mu_k) = b^2 (1 + \beta \mu_k^2)^2$$

$$\times \left[P_{\text{peak}}(k) \exp(-k^2 \Sigma^2(\mu_k)/2) + P_{\text{smooth}}(k) \right]$$

$$\beta \equiv f/b$$

f: Growth rate b: bias

The linear growth rate: $f \equiv rac{H_0 a_0}{H a} rac{d \ln D}{d au} = rac{d \ln D}{d \ln a}$



CDM in GR gives: $f(\Omega_M) \approx \Omega_M^{0.6}$

$$\Lambda ext{CDM in GR gives:} \quad f(\Omega_M, \Omega_\Lambda) pprox \Omega_M^{0.6} + \frac{\Omega_\Lambda}{70} \left(1 + \frac{\Omega_M}{2}\right)$$

Approximation regimes to study BAO and RSD and the whole structure of the PP and CF:

- Linear
- Quasilinear
- Non-linear

Linear Regime

PPF eqs & fluid eqs

The eqs. to be modified in the PPF formalism are the Poisson eq. and the gravitational slip:

$$k^{2}\Psi = -4\pi G a^{2} \bar{\rho}_{T} \mu \left(a, k\right) \left[\Delta + 3\left(1 + w_{eff}\right) \sigma\right]$$
 (6)

$$k^{2}\left(\Phi + \gamma\left(\mathbf{a}, \mathbf{k}\right)\Psi\right) = -12\pi G a^{2} \mu\left(\mathbf{a}, \mathbf{k}\right) \left(\bar{\rho}_{T} + \bar{P}_{T}\right) \sigma. \tag{7}$$

where $\Delta = \delta_{eff} + 3\mathcal{H}(1 + w_{eff})\theta_{eff}/k^2$. $\mu = \gamma = 1$ implies GR. Any deviation from unity would suggest a MG scheme.

Besides the Einstein equations we have the continuity and the Euler equations (stemming from fluid conservation) given by:

$$\delta' = -(1+w)\left(\theta + 3\Phi'\right) - 3\mathcal{H}\left(\frac{\delta P}{\delta \rho} - w\right)\delta, \tag{8}$$

$$\theta' = -\mathcal{H}(1-3w)\theta - \frac{w'}{1+w}\theta + \frac{\delta P/\delta \rho}{1+w}k^2\delta - k^2\sigma + k^2\Psi. \tag{9}$$

The above eqs. (6,7,8,9) are the system to be solved in the PPF formalism.

Notice that:

Weak lensing probes the combination $(\Phi + \Psi)$.

Clustering of matter and the peculiar velocities are related to Ψ , which follows from the conservation or geodesic equations, and therefore can constrain the function μ (a, k). None of the observables depends solely on Φ , but a combination of probes shall determine it.

Parametrizing models

Assuming certain classes of modified gravity models whose Lagrangian introduce only one extra dof, with a second order dynamical equation, one can obtain a generic form of the function μ y γ :

$$\mu = \frac{1 + p_3(a) k^2}{p_4(a) + p_5(a) k^2}.$$
 (10)

$$\gamma = \frac{p_1(a) + p_2(a) k^2}{1 + p_3(a) k^2}, \tag{11}$$

The functions p_i depend only on the scale factor (a). They determine particular MG models. Specifically, we have considered:

$$\mu = \frac{1 + \frac{4}{3}\lambda^2 k^2 a^s}{1 + \lambda^2 k^2 a^s}. (12)$$

$$\gamma = \frac{1 + \frac{2}{3}\lambda^2 k^2 a^s}{1 + \frac{4}{3}\lambda^2 k^2 a^s}.$$
 (13)

with s = 4, that corresponds to the scale dependent Bertschinger & Zukin model (arXiv: 0801.2431).

Current RSD measurements

E NE R G Y

Table 2.1: Compilation of RSD-based $f\sigma_8$ measurements from [89]. For the BOSS DR11 galaxy sample we cite the measurement of [85]. Other analyses of DR11 find consistent results [87] [84]

z	$f\sigma_8$	survey	reference
0.067	0.42 ± 0.06	6dFGRS	80
0.17	0.51 ± 0.06	2dFGRS	90
0.22	0.42 ± 0.07	WiggleZ	82
0.25	0.35 ± 0.06	SDSS LRG	77
0.37	0.46 ± 0.04	SDSS LRG	77
0.41	0.45 ± 0.04	WiggleZ	82
0.57	0.45 ± 0.03	BOSS CMASS	85
0.6	0.43 ± 0.04	WiggleZ	82
0.77	0.49 ± 0.18	VVDS	91
0.78	0.38 ± 0.04	WiggleZ	82
0.80	0.47 ± 0.08	VIPERS	92
1.4	0.48 ± 0.12	FastSound	93

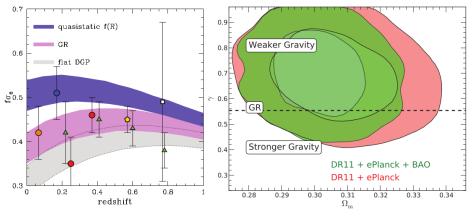


Figure 2.4: Left: The data points show the CMASS DR11 measurement of $f\sigma_8$ (gold pentagon; 85) along with similar, low redshift, measurements and 1σ error bars as presented in Table 2.1 The three stripes show theoretical predictions for different gravity models allowing for uncertainty in the background cosmological parameters, constrained using only the WMAP 7 data 94. Figure adapted from 89. Right: Joint constraints in the Ω_m - γ plane from BOSS DR11, where γ is the growth index of structure, as defined in Eq. (2.11). Figure taken from 85.

Beyond linear...quasi-linear theory

$$rac{1}{a^2}
abla^2\psi=4\pi G
ho_m\delta-rac{1}{2a^2}
abla^2arphi,$$
 Poisson Eq.
$$(3+2\omega_{
m BD})rac{1}{a^2}
abla^2arphi=-8\pi Gar
ho\delta+{
m NL},$$
 Klein Gordon Eq.

In the Fourier space:

$$(3+2\omega_{\mathrm{BD}})\frac{k^{2}}{a^{2}}\varphi = 8\pi G\rho\delta - \mathcal{I}(\varphi), \quad \text{with} \qquad \mathcal{I}(\varphi) = M_{1}(k)\varphi + \delta\mathcal{I}(\varphi)$$

$$\delta\mathcal{I}(\varphi) = \frac{1}{2}\int \frac{d^{3}k_{1}d^{3}k_{2}}{(2\pi)^{3}}\delta_{D}(\mathbf{k} - \mathbf{k}_{12})M_{2}(\mathbf{k}_{1}, \mathbf{k}_{2})\varphi(\mathbf{k}_{1})\varphi(\mathbf{k}_{2})$$

$$+ \frac{1}{6}\int \frac{d^{3}k_{1}d^{3}k_{2}d^{3}k_{3}}{(2\pi)^{6}}\delta_{D}(\mathbf{k} - \mathbf{k}_{123})M_{3}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3})\varphi(\mathbf{k}_{1})\varphi(\mathbf{k}_{2})\varphi(\mathbf{k}_{3}) + \cdots,$$

where the functions M_i are determined by the particular MG model.

$$M_1(a) = rac{3}{2} rac{H_0^2}{|f_{R0}|} rac{(\Omega_{m0}a^{-3} + 4\Omega_{\Lambda})^3}{(\Omega_{m0} + 4\Omega_{\Lambda})^2},$$

For f(R) Hu-Sawicky models:

$$M_2(a) = \frac{9}{4} \frac{H_0^2}{|f_{R0}|^2} \frac{(\Omega_{m0}a^{-3} + 4\Omega_{\Lambda})^5}{(\Omega_{m0} + 4\Omega_{\Lambda})^4},$$

 $M_3(a) = \frac{45}{8} \frac{H_0^2}{|f_{R0}|^3} \frac{(\Omega_{m0}a^{-3} + 4\Omega_{\Lambda})^7}{(\Omega_{m0} + 4\Omega_{\Lambda})^6}.$

Lagrangian Perturbation Theory: 1-loop

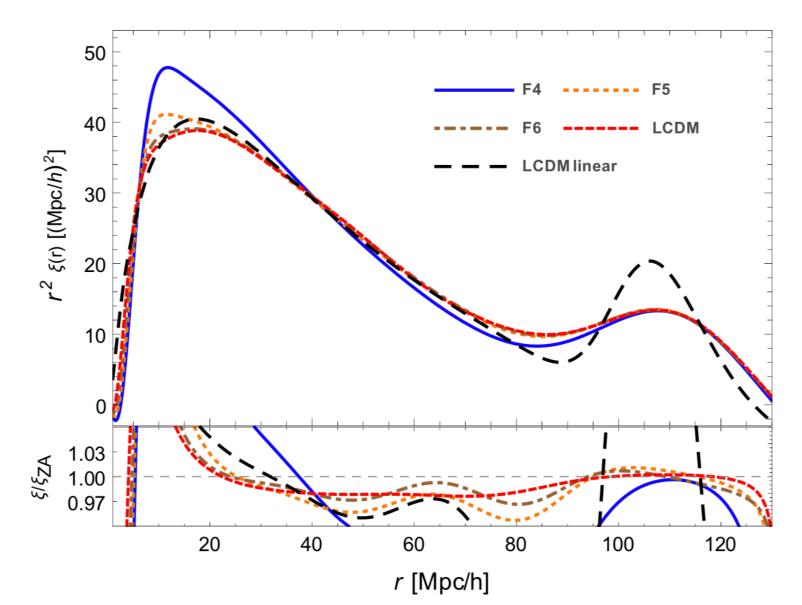
$$\mathbf{x}(\mathbf{q},t) = \mathbf{q} + \mathbf{\Psi}(\mathbf{q},t),$$

$$-\delta(\mathbf{x}) = \frac{J(\mathbf{q}) - 1}{J(\mathbf{q})} = \Psi_{i,i} - \frac{1}{2}((\Psi_{i,i})^2 + \Psi_{i,j}\Psi_{j,i}) + \frac{1}{6}(\Psi_{i,i})^3 + \frac{1}{3}\Psi_{i,j}\Psi_{j,k}\Psi_{k,i} + \frac{1}{2}\Psi_{i,i}\Psi_{j,k}\Psi_{k,j} + \mathcal{O}(\lambda^4).$$

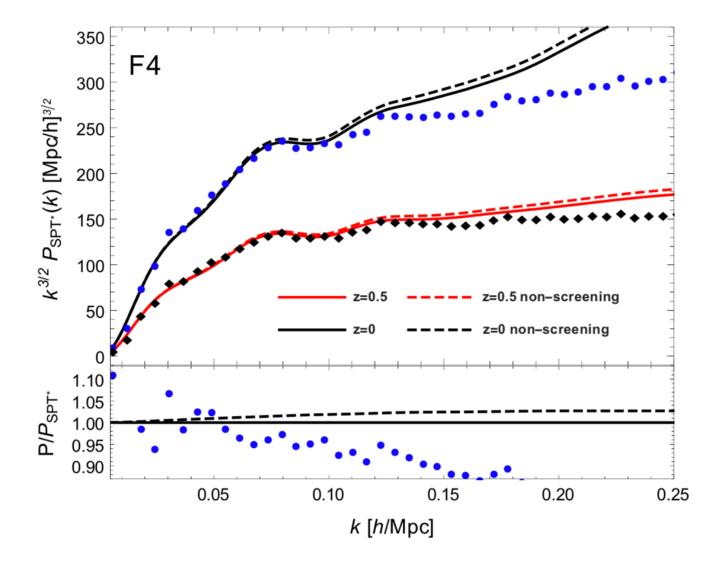
$$\begin{split} (\hat{\mathcal{T}} - A(k))[\Psi_{i,i}](\mathbf{k}) &= [\Psi_{i,j}\hat{\mathcal{T}}\Psi_{j,i}](\mathbf{k}) - \frac{A(k)}{2}[\Psi_{i,j}\Psi_{j,i}](\mathbf{k}) - \frac{A(k)}{2}[(\Psi_{l,l})^2](\mathbf{k}) \\ &- [\Psi_{i,k}\Psi_{k,j}\hat{\mathcal{T}}\Psi_{j,i}](\mathbf{k}) + \frac{A(k)}{6}[(\Psi_{l,l})^3](\mathbf{k}) + \frac{A(k)}{2}[\Psi_{l,l}\Psi_{i,j}\Psi_{j,i}](\mathbf{k}) \\ &+ \frac{A(k)}{3}[\Psi_{i,k}\Psi_{k,j}\Psi_{j,i}](\mathbf{k}) + \frac{k^2/a^2}{6\Pi(\mathbf{k})}\delta I(\mathbf{k}) + \frac{M_1}{6\Pi(k)}\frac{1}{a^2}[(\nabla_{\mathbf{x}}^2\varphi - \nabla^2\varphi)](\mathbf{k}). \end{split}$$

$$\delta I(\mathbf{k}) = \frac{1}{2} \left(\frac{2A_0}{3} \right)^2 \int_{\mathbf{k}_{12} = \mathbf{k}} M_2(\mathbf{k}_1, \mathbf{k}_2) \frac{\tilde{\delta}(\mathbf{k}_1)\tilde{\delta}(\mathbf{k}_2)}{\Pi(k_1)\Pi(k_2)} + \frac{1}{6} \left(\frac{2A_0}{3} \right)^3 \int_{\mathbf{k}_{123} = \mathbf{k}} \left(M_3(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) - \frac{M_2(\mathbf{k}_1, \mathbf{k}_{23})(M_2(\mathbf{k}_2, \mathbf{k}_3) + J_{FL}^{(2)}(\mathbf{k}_2, \mathbf{k}_3)(3 + 2w_{\text{BD}}))}{\Pi(k_{23})} \right) \frac{\tilde{\delta}(\mathbf{k}_1)\tilde{\delta}(\mathbf{k}_2)\tilde{\delta}(\mathbf{k}_3)}{\Pi(k_1)\Pi(k_2)\Pi(k_3)} + \cdots,$$

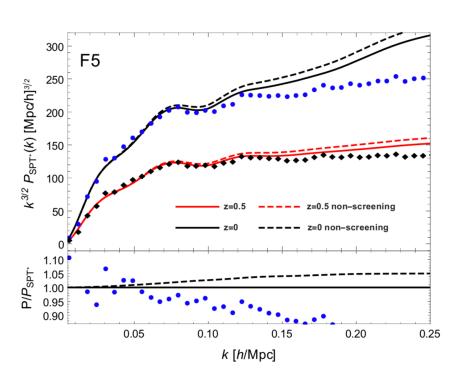
Two-point correlation function

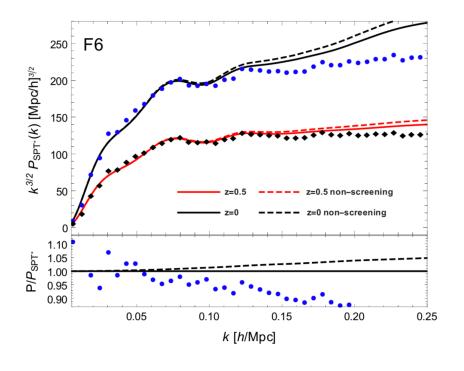


Power Spectrum, f(R) gravity



Power Spectrum, f(R) gravity



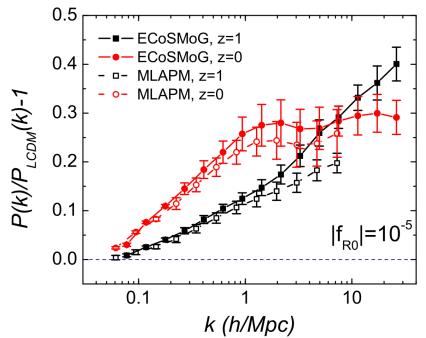


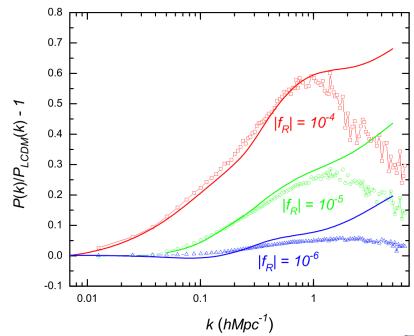
Non-linear regime

$$\dot{\vec{v}}_i = -\vec{\nabla}\Phi - \beta_i(\phi)\vec{\nabla}\delta\phi \qquad \nabla^2\Phi = 4\pi G \sum_j \rho_j \delta_j$$
$$\nabla^2\delta\phi = F(\delta\phi) + \sum_j 8\pi G\beta_j(\phi)\delta_j ,$$

Solving these full non-linear equations with N-body methods

ECOSMOG: An Efficient Code for Simulating Modified Gravity Li et al, arXiv:1110.1379

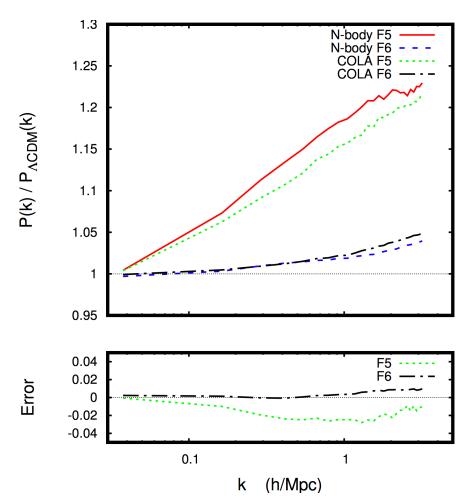




MOCKS with hybrid methods

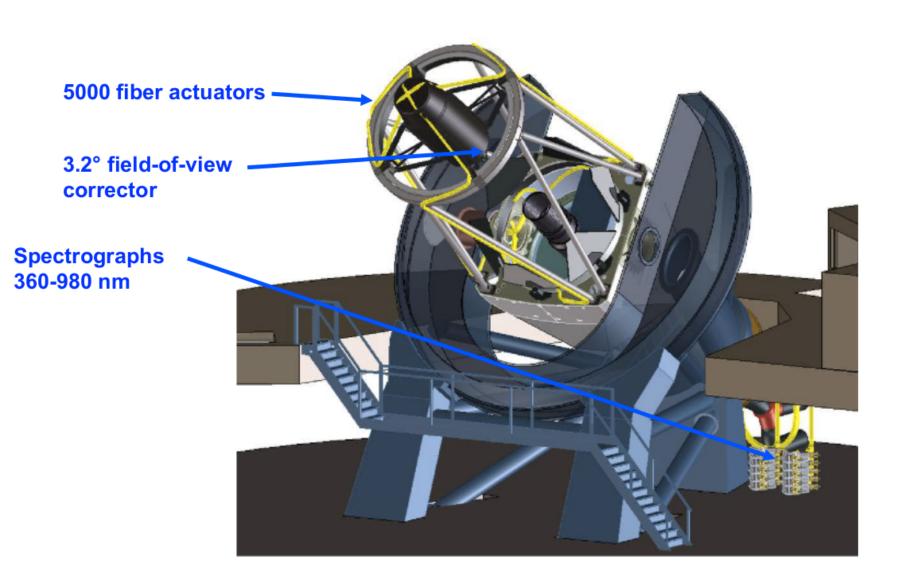
COLA (COmoving Lagrangian Acceleration): small scales with full N-body methods large scales with 2LPT

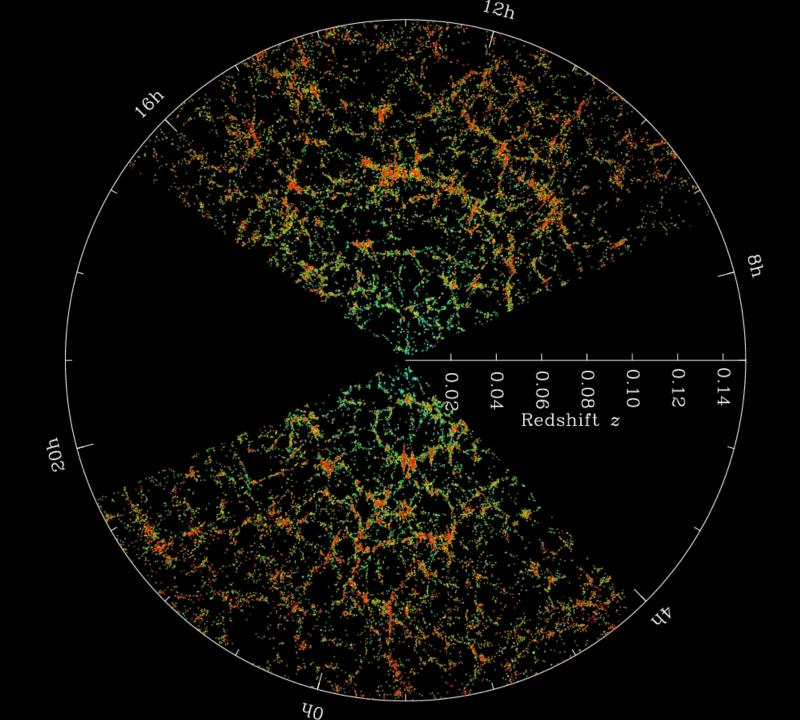
Tassev et al, arXiv: 1301.0322 MG COLA, Winther et al, arXiv: 1703.00879



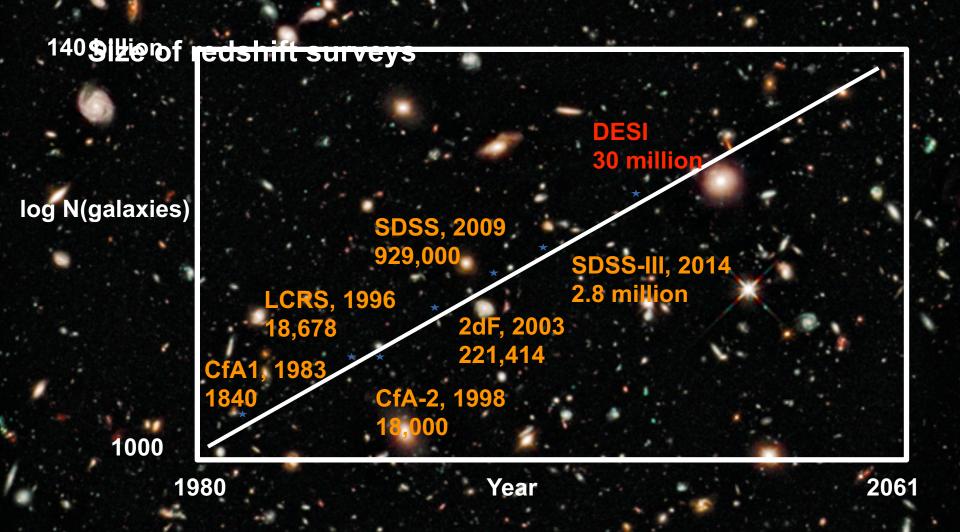
Answering these questions with data from DESI Dark Energy Spectroscopic Instrument

DESI Instrument



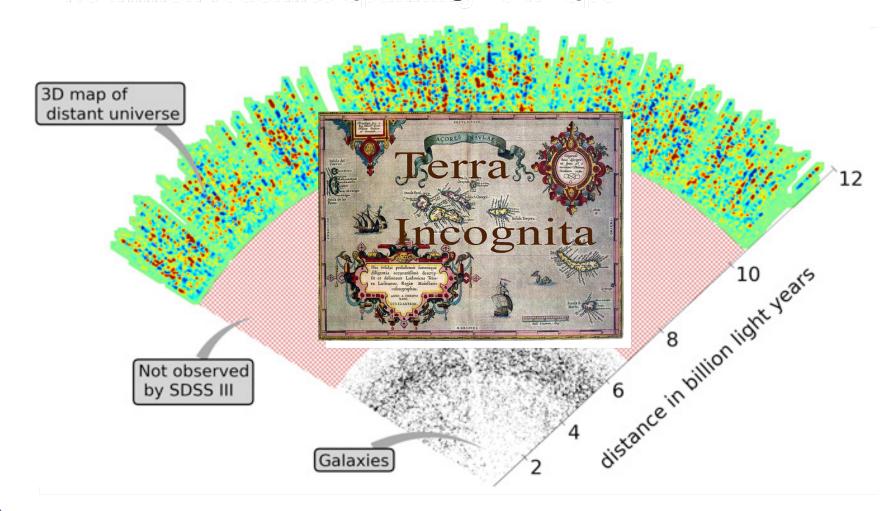


DESI ahead of the curve if completed by 2024



Where are we with SDSS-III/BOSS?

SDSS-III/BOSS completed on April 1, 2014 1.5 million redshifts spanning ~6 h⁻³Gpc³



What is the DESI survey?

An imaging (targeting) survey over 14,000 deg²

g-band to 24.0 mag r-band to 23.6 mag z-band to 23.0 mag

A spectroscopic survey

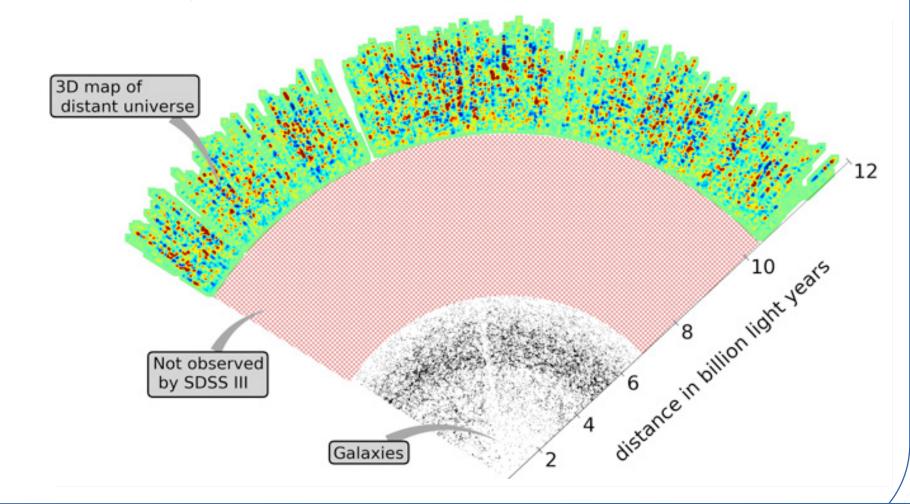
- 4 million Luminous Red Galaxies (LRG), z<1.0
- 23 million Emission Line Galaxies (ELG), z<1.7
- 1.4 million quasars, z < 2.0
- 0.6 million quasars for Lyman-alpha-forest, 2.1 < z < 3.5
- 10 million BGS, z = 0.2

More than 30 million spectra from galaxies and quasars!

What is the DESI survey?

The largest spectroscopic survey for dark energy

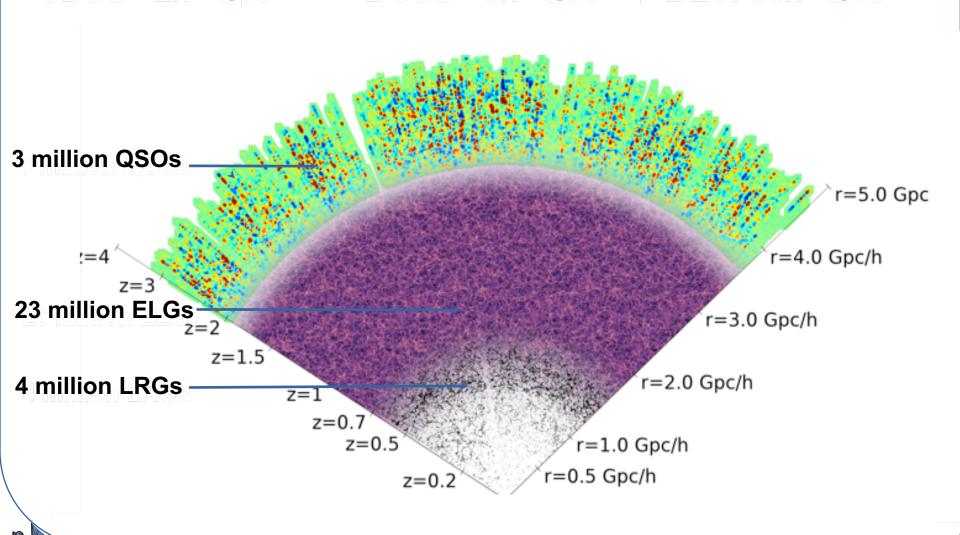
SDSS ~2h⁻³Gpc³ ⇒ BOSS ~6h⁻³Gpc³



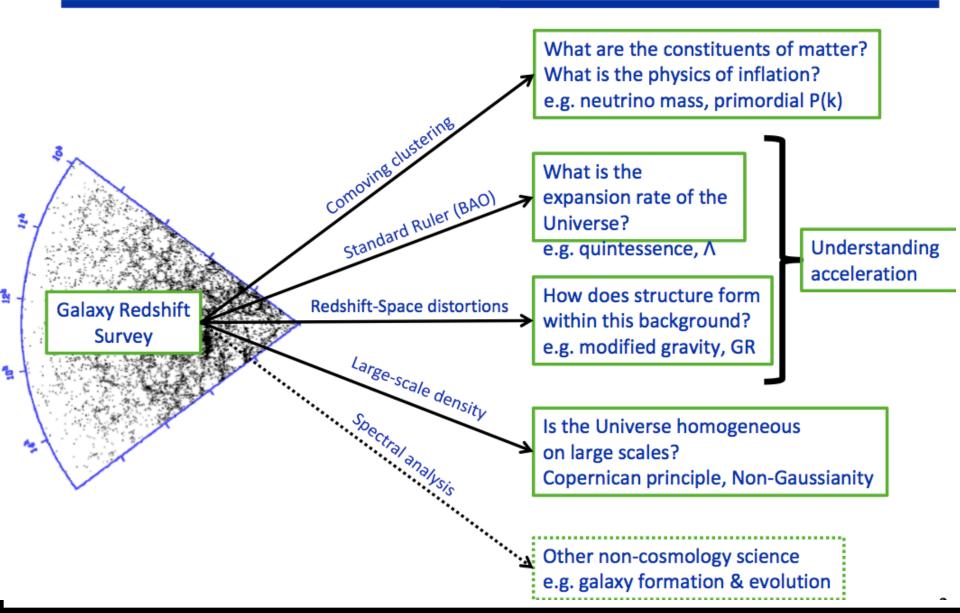
What is the DESI survey?

The largest spectroscopic survey for dark energy next to come

SDSS ~2h⁻³Gpc³ ⇒ BOSS ~6h⁻³Gpc³⇒ DESI 50h⁻³Gpc³



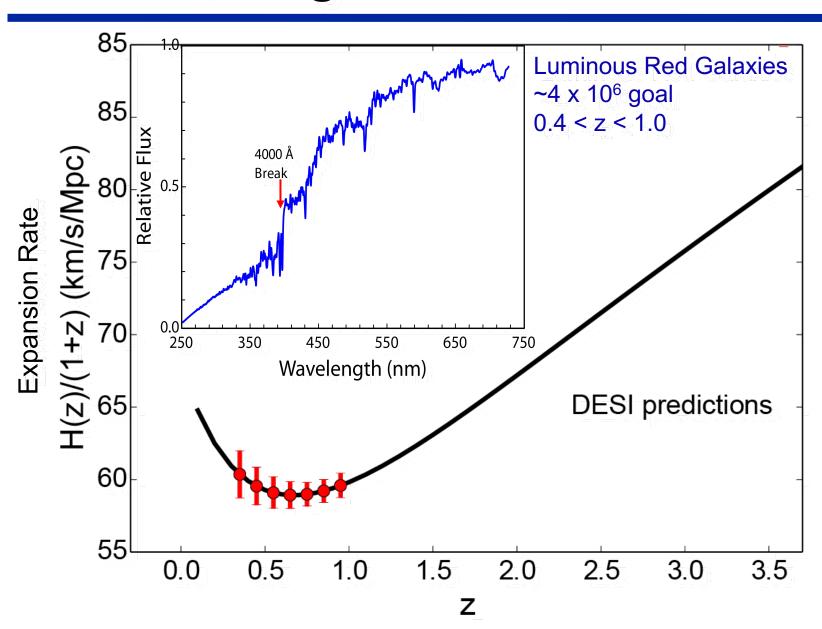
Cosmology from galaxy surveys



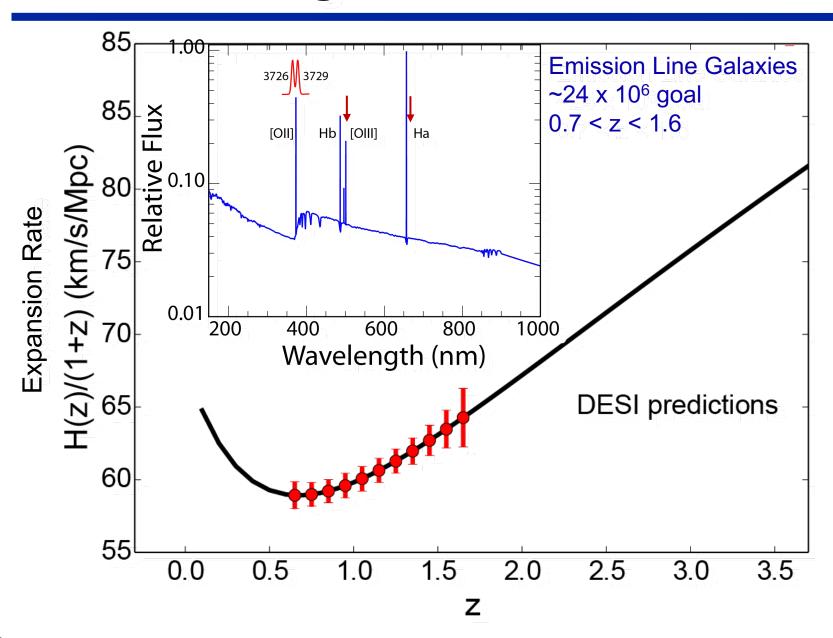
DESI Key Project goals

- Dark Enegy through the distance-redshift relation
 - —Measure distance scale to <0.3% between 0.0 < z < 1.1
 - —Measure distance scale to <0.3% between 1.1 < z < 1.9
 - —Measure the Hubble parameter to < 1% in the bin 1.9 < z < 3.7
- Gravitational growth
 - —Constrain the growth factor at ~ a few percent level up to z=1.5
- Beyond Dark Energy
 - —Constrain spectral index of primordial perturbations and its running to < 0.4%</p>
 - —Measure the neutrino masses to < 0.020 eV

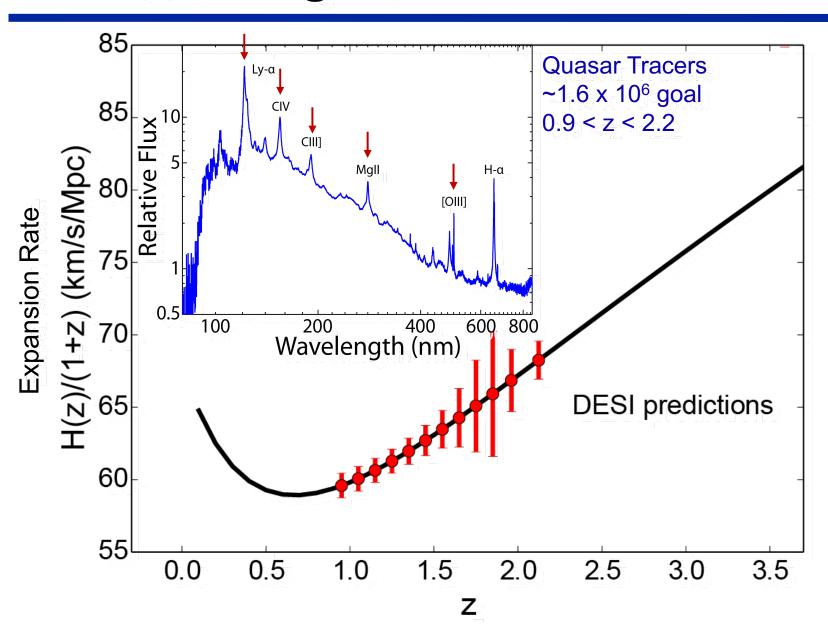
LRG Targets



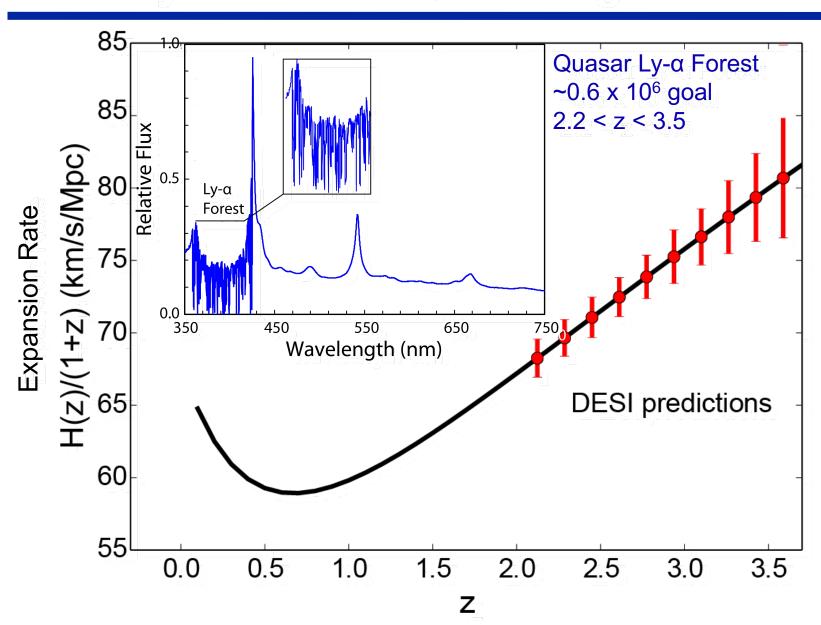
ELG Targets



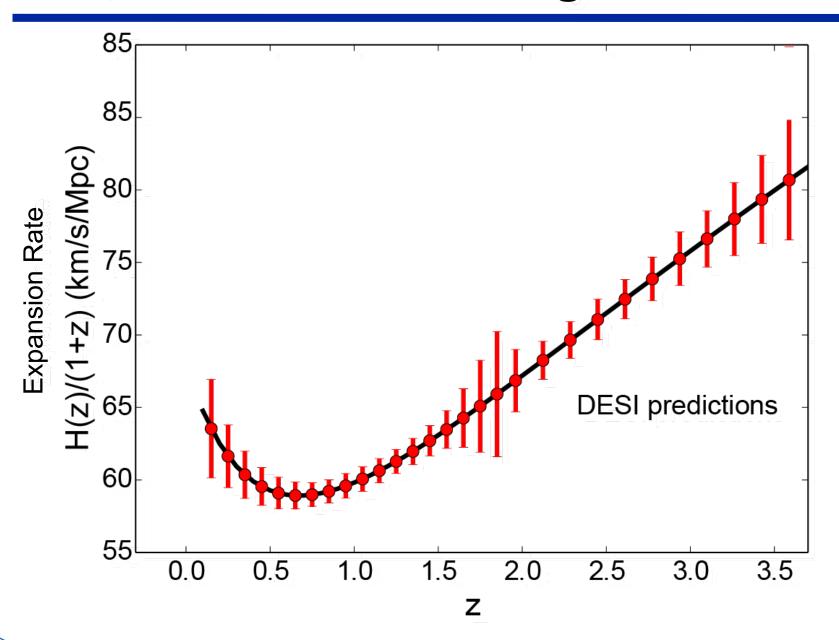
QSO Targets



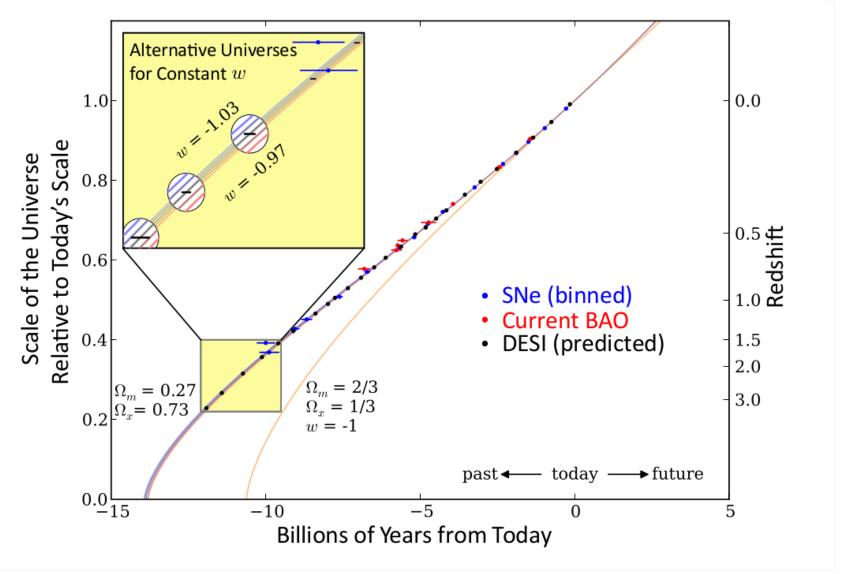
Ly-α Forest QSO Targets



DESI on the Hubble Diagram



DESI will discriminate between Dark Energy models

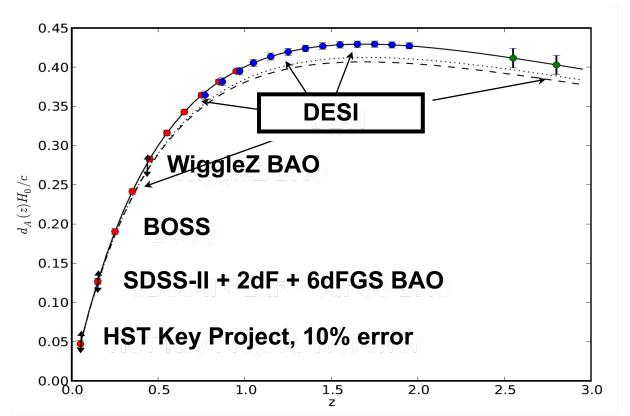


DESI science reach: BAO

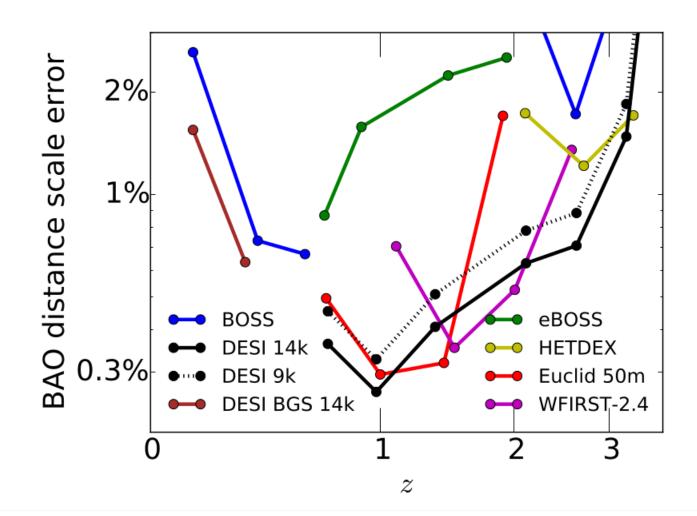
Dark energy from Stage IV BAO

- —Geometric probe with 0.3-1% precision from z=0.5 -> 3
- —35 measurements with 1% precision

DESI BAO "Hubble diagram"



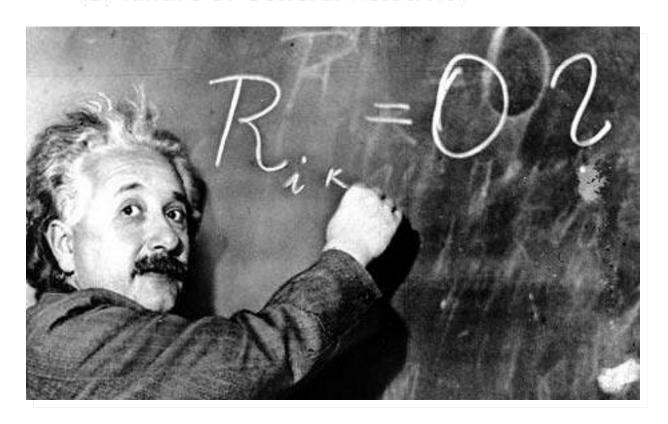
DESI Compared to Current/Future Surveys



Dark Energy nature

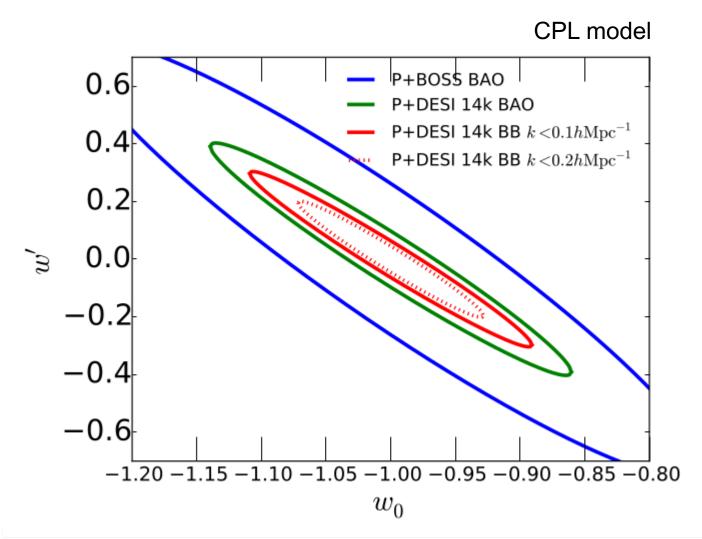
Determine if dark energy is...

- (1) Einstein's cosmological constant, Λ
- (2) new field, or
- (3) failure of General Relativity

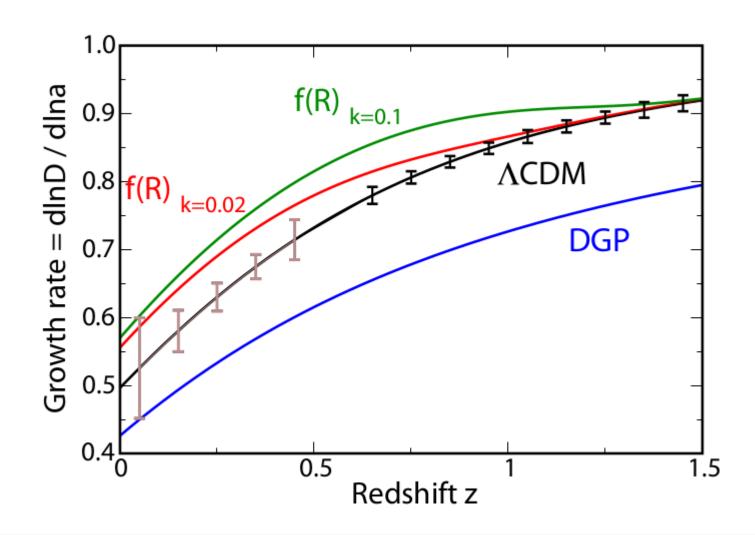


Dark Energy eq. of state

$$p/\rho = w$$



DESI - RSD Constraints on the growth function



Institutions in DESI

E NE R G Y

- **AAO**
- Argonne
- Brazil
- Brookhaven
- Carnegie Mellon Univ.
- Durham
- EPFL
- ETH Zurich
- FNAL
- Harvard
- IAA Spain
- Kansas
- KASI
- LAM/CPPM
- Mexico (UNAM, UG, Cinvestav, ININ)
- NOAO
- New York Univ.

- Portsmouth
- Saclay
- SJTU
- SLAC
- Spain
- Texas A&M
- The Ohio State Univ.
- Univ. College London
- UC Berkeley
- UC Irvine
- UC Santa Cruz
- U. Edinburgh
- U. Michigan
- U. Pittsburgh
- U. Utah
- USTC
- Yale

DESI Meeting

The DESI Experiment Part I: Science, Targeting, and Survey Design

DESI Collaboration: Amir Aghamousa⁷³, Jessica Aguilar⁷⁶, Steve Ahlen⁸⁵, Shadab Alam^{41,59}, Lori E. Allen⁸¹, Carlos Allende Prieto⁶⁴, James Annis⁵², Stephen Bailey⁷⁶, Christophe Balland⁸⁸, Otger Ballester⁵⁷, Charles Baltay⁸⁴, Lucas Beaufore⁴⁵, Chris Bebek⁷⁶, Timothy C. Beers³⁹, Eric F. Bell²⁸, Jos Luis Bernal⁶⁶, Robert Besuner⁸⁹, Florian Beutler⁶², Chris Blake¹⁵, Hannes Bleuler⁵⁰, Michael Blomqvist², Robert Blum⁸¹, Adam S. Bolton^{35,81}, Cesar Briceno¹⁸, David Brooks³³, Joel R. Brownstein³⁵, Elizabeth Buckley-Geer⁵², Angela Burden⁹, Etienne Burtin¹², Nicolas G. Busca⁷, Robert N. Cahn⁷⁶, Yan-Chuan Cai⁵⁹, Laia Cardiel-Sas⁵⁷, Raymond G. Carlberg²³, Pierre-Henri Carton¹², Ricard Casas⁵⁶, Francisco J. Castander⁵⁶, Jorge L. Cervantes-Cota¹¹, Todd M. Claybaugh⁷⁶, Madeline Close¹⁴, Carl T. Coker²⁶, Shaun Cole⁶⁰, Johan Comparat⁶⁷, Andrew P. Cooper⁶⁰, M.-C. Cousinou⁴, Martin Crocce⁵⁶, Jean-Gabriel Cuby², Daniel P. Cunningham¹, Tamara M. Davis⁸⁶, Kyle S. Dawson³⁵, Axel de la Macorra⁶⁸, Juan De Vicente¹⁹, Timothée Delubac⁷⁴, Mark Derwent²⁶, Arjun Dey⁸¹, Govinda Dhungana⁴⁴, Zhejie Ding³¹, Peter Doel³³, Yutong T. Duan⁸⁵, Anne Ealet⁴, Jerry Edelstein⁸⁹, Sarah Eftekharzadeh³² Daniel J. Eisenstein⁵³, Ann Elliott⁴⁵, Stéphanie Escoffier⁴, Matthew Evatt⁸¹, Parker Fagrelius⁷⁶, Xiaohui Fan⁹⁰, Kevin Fanning⁴⁸, Arya Farahi⁴⁰, Jay Farihi³³, Ginevra Favole^{51,67}, Yu Feng⁴⁷, Enrique Fernandez⁵⁷, Joseph R. Findlay³², Douglas P. Finkbeiner⁵³, Michael J. Fitzpatrick⁸¹. Brenna Flaugher⁵², Samuel Flender⁸, Andreu Font-Ribera⁷⁶, Jaime E. Forero-Romero²², Pablo Fosalba⁵⁶, Carlos S. Frenk⁶⁰, Michele Fumagalli^{16,60}, Boris T. Gaensicke⁴⁹, Giuseppe Gallo⁵², Juan Garcia-Bellido⁶⁷, Enrique Gaztanaga⁵⁶, Nicola Pietro Gentile Fusillo⁴⁹, Terry Gerard²⁹, Irena Gershkovich⁴⁸, Tommaso Giannantonio^{70,78}, Denis Gillet⁵⁰, Guillermo Gonzalez-de-Rivera⁵⁴, Violeta Gonzalez-Perez⁶², Shelby Gott⁸¹, Or Graur^{6,38,53}, Gaston Gutierrez⁵², Julien Guy⁸⁸, Salman Habib⁸, Henry Heetderks⁸⁹, Ian Heetderks⁸⁹, Katrin Heitmann⁸, Wojciech A. Hellwing⁶⁰, David A. Herrera⁸¹, Shirley Ho^{41,47,76}, Stephen Holland⁷⁶, Klaus Honscheid^{26,45}, Eric Huff²⁶, Eric Huff⁴⁵, Timothy A. Hutchinson³⁵, Dragan Huterer⁴⁸, Ho Seong Hwang⁸⁷, Joseph Maria Illa Laguna⁵⁷, Yuzo Ishikawa⁸⁹, Dianna Jacobs⁷⁶, Niall Jeffrey³³. Patrick Jelinsky⁸⁹, Elise Jennings⁵², Linhua Jiang⁶⁹, Jorge Jimenez⁵⁷, Jennifer Johnson²⁶, Richard Joyce⁸¹, Eric Jullo², Stéphanie Juneau^{12,81}, Sami Kama⁴⁴, Armin Karcher⁷⁶, Sonia Karkar⁸⁸, Robert Kehoe⁴⁴, Noble Kennamer³⁷, Stephen Kent⁵², Martin Kilbinger¹², Alex G. Kim⁷⁶, David Kirkby³⁷, Theodore Kisner⁷⁶, Ellie Kitanidis⁴⁷, Jean-Paul Kneib⁷⁴, Sergey Koposov⁶¹, Eve Kovacs⁸, Kazuya Koyama⁶², Anthony Kremin⁴⁸, Richard Kron⁵², Luzius Kronig⁵⁰, Andrea Kueter-Young³⁴, Cedric G. Lacey⁶⁰, Robin Lafever⁸⁹, Ofer Lahav³³, Andrew Lambert⁷⁶, Michael Lampton⁸⁹, Martin Landriau⁷⁶, Dustin Lang²³, Tod R. Lauer⁸¹, Jean-Marc Le Goff¹², Laurent Le Guillou⁸⁸, Auguste Le Van Suu³, Jae Hyeon Lee⁴², Su-Jeong Lee⁴⁵, Daniela Leitner⁷⁶, Michael Lesser⁹⁰, Michael E. Levi⁷⁶, Benjamin L'Huillier⁷³, Baojiu Li⁶⁰, Ming Liang⁸¹. Huan Lin⁵², Eric Linder⁸⁹, Sarah R. Loebman²⁸, Zarija Lukić⁷⁶, Jun Ma⁷², Niall MacCrann^{13,45}, Christophe Magneville¹², Laleh Makarem⁵⁰, Marc Manera^{17,33}, Christopher J. Manser⁴⁹, Robert Marshall⁸¹, Paul Martini^{13,26}, Richard Massey¹⁶, Thomas Matheson⁸¹, Jeremy McCauley⁷⁶ Patrick McDonald⁷⁶, Ian D. McGreer⁹⁰, Aaron Meisner⁷⁶, Nigel Metcalfe⁶⁰, Timothy N. Miller⁷⁶.

Extras

Modified Gravity?

$$\Psi = (1 - \zeta)\Phi$$

TABLE II. Results from fits to the RSD data. The first line of results is for the LRG₆₀ data set, and the second line is for LRG₂₀₀. For each set, we present the best-fit values of the gravitational slip at redshift 0 and 1 (ζ_0 and ζ_1). The uncertainties are at the 1 standard deviation level. The fiducial value of both parameters in general relativity is 0. We also indicate the correlation coefficient ρ of the distribution of the fit to these two parameters, the minimum χ^2 of the fit and corresponding probability to exceed (PTE).

ζ ₀	ζ1	ρ	χ^2	1-PTE
-2.94 ± 1.94	0.32 ± 0.13	-0.72	1.34	0.99
-2.07 ± 1.88	0.28 ± 0.10	-0.70	3.31	0.86

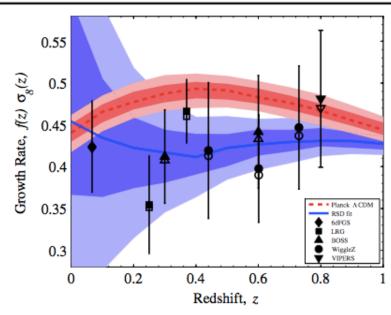


FIG. 1 (color online). Comparing models to recent measurements of $f(z)\sigma_8(z)$. We are plotting results for the LRG₂₀₀ data set. The open markers are the original published values from the RSD measurements, and the filled markers are after accounting for the Alcock-Paczynski effect in going from WMAP to Planck cosmology. The measurement error bars are at the 1 standard deviation uncertainty level. The dashed red line illustrates the expected growth rate from ACDM with Planck parameters, with the 1 and 2 standard deviation uncertainty illustrated with the shaded bands. The solid blue line and corresponding blue shaded regions illustrates the best fit to the RSD data with the gravitational slip model. We note that almost all the measurements include our best fit model at the 1 standard deviation uncertainty level, which is reflected in the low χ^2 in Table II. The 1 standard deviation range of the model (the darker blue band) is narrower than the typical 1 standard deviation uncertainty on any of the measurements because the fit has been calculated from the several independent measurements.

Current RSD measurements

ENER CY

SPECIAL OFFI

A SPECI

Table 2.1: Compilation of RSD-based $f\sigma_8$ measurements from [89]. For the BOSS DR11 galaxy sample we cite the measurement of [85]. Other analyses of DR11 find consistent results [87] [84]

	$f\sigma_8$	survey	reference
0.067	0.42 ± 0.06	6dFGRS	80
0.17	0.51 ± 0.06	2dFGRS	90
0.22	0.42 ± 0.07	WiggleZ	82
0.25	0.35 ± 0.06	SDSS LRG	77
0.37	0.46 ± 0.04	SDSS LRG	77
0.41	0.45 ± 0.04	WiggleZ	82
0.57	0.45 ± 0.03	BOSS CMASS	85
0.6	0.43 ± 0.04	WiggleZ	82
0.77	0.49 ± 0.18	VVDS	91
0.78	0.38 ± 0.04	WiggleZ	82
0.80	0.47 ± 0.08	VIPERS	92
1.4	0.48 ± 0.12	FastSound	93

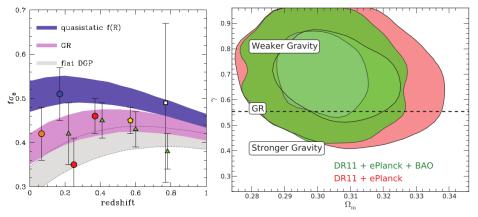


Figure 2.4: Left: The data points show the CMASS DR11 measurement of $f\sigma_8$ (gold pentagon; 85) along with similar, low redshift, measurements and 1σ error bars as presented in Table 2.1. The three stripes show theoretical predictions for different gravity models allowing for uncertainty in the background cosmological parameters, constrained using only the WMAP 7 data 94. Figure adapted from 89. Right: Joint constraints in the Ω_m - γ plane from BOSS DR11, where γ is the growth index of structure, as defined in Eq. (2.11). Figure taken from 85.

Spectral index with SDSS-III/BOSS

Measures of the inflationary epoch

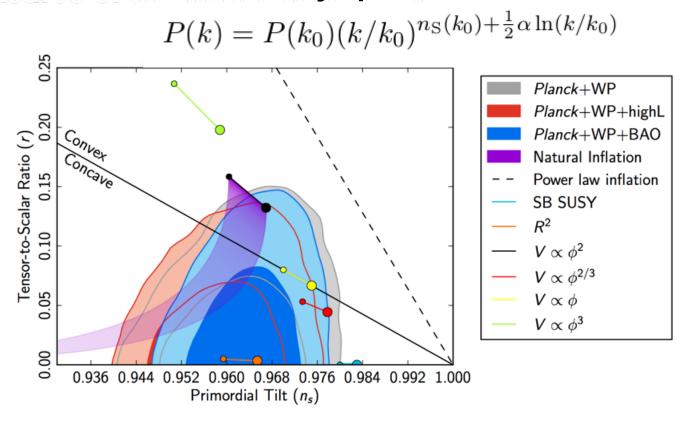


Fig. 26. Marginalized 68 % and 95 % confidence levels for n_s and r from Planck+WP and BAO data, compared to the theoretical predictions of selected inflationary models.

from Planck overview paper (2014)

DESI Science Reach: neutrino mass hierarchy

Terrestrial experiments measure Δm^2 of neutrino masses

DESI sensitivity is 0.020 eV, measured from PP of galaxy map

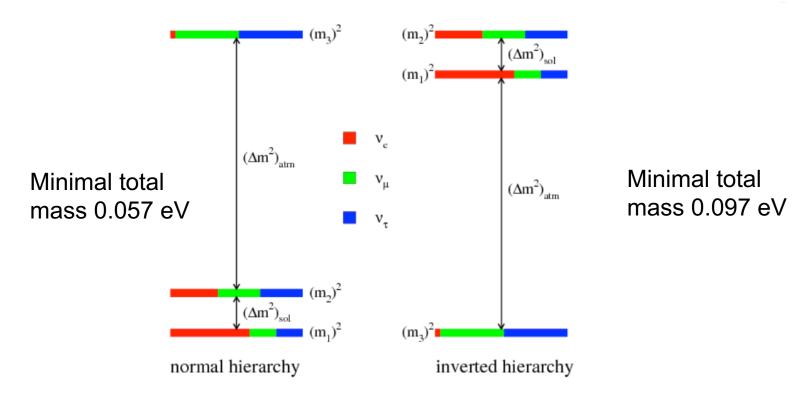
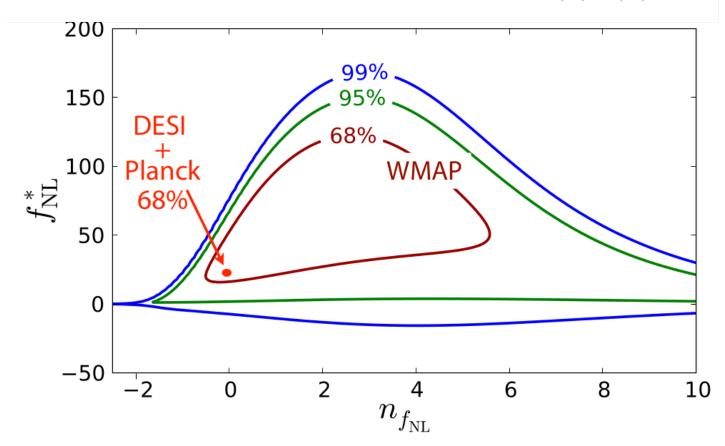


Figure 2.14: The two possible neutrino mass hierarchies. Also shown is what fraction of each mass eigenstate corresponds to a neutrino flavor eigenstate. DESI will be sensitive to the sum of the neutrino masses and possibly to the mass hierarchy.

Primordial Non-Gaussianities

$$b(k) \equiv b_0 + \Delta b(k) = b_0 + f_{\rm NL}(b_0 - 1)\delta_c \frac{3\Omega_M H_0^2}{a g(a) T(k) c^2 k^2}$$



$$f_{\mathrm{NL}}(k) = f_{\mathrm{NL}}^*(k/k_*)^{n_{f_{\mathrm{NL}}}}$$

Broad Scientific Goals

